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An analysis defines the improved version of the theoretical model of magnetic linear bi-
refringence in rare earth doped materials developed and applied in several papers of
Kolmakova et al. The approach presented here is formulated in the language of tensor opera-
tors instead of equivalent Stevens objects, and in addition the radial terms of the effective
operators contributing to the polarizability tensor are all defined for the complete radial ba-
sis sets of one-electron functions. The approach is based on perturbation theory. The effec-
tive operators represent the perturbing influence of singly excited configurations 4fN–1n′ ′l
for ′l = d, g and all n′. The model is defined within the single configuration approximation,
and it addresses especially the problem of evaluation of the radial integrals. The discussion
of the tensorial form of the effective operators is completed by the numerical values of ap-
propriate radial integrals evaluated for the ions across the lanthanide series to be used in fu-
ture theoretical analysis.
Keywords: Rare earth ions; Lanthanides; Magnetic anisotropy; Polarizability tensor; Effective
tensor operators; Perturbation theory; Perturbed function approach.

There is an extensive interest in development of paramagnetic liquid crys-
tals that, to align them, require a much weaker magnetic field than in the
case of diamagnetic samples. This property is especially attractive because
of the wide applications of such materials. However, this property to be ob-
served requires large magnetic anisotropy of the material. In fact the orien-
tation of a liquid crystal in a magnetic field depends not only on the
magnitude, but also on the sign of the magnetic anisotropy. It has been
found1 that the lanthanides are divided into two groups of ions that differ
from each other by sign of their magnetic anisotropy. The features and be-
havior of a sample in a magnetic field are determined by measuring the
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magnetic birefringence that is in turn used to determine the sign of mag-
netic anisotropy. Therefore, it is crucial for further applications of various
materials, and for the modelling of specific devices, to formulate a precise
theoretical model of magnetic birefringence of lanthanide doped materials,
and to verify which physical mechanisms in its description are the domi-
nant ones.

The inspiration for the research on the theoretical description of the
magnetic birefringence in lanthanide doped systems was found in a series
of interesting papers by Kolmakova and her collaborators2–4; the demand
for a more precise model than that presented previously is reinforced by the
statement in which the authors realize “insufficient accuracy in the value of
radial integrals and mean energies hω0 , and neglect of contributions due to transi-
tions to higher excited configurations 4fN–15g, ..., which in general cannot be dis-
regarded”.

The novel features of the present investigation cover the discussion of the
polarizability tensor expressed in terms of effective tensor operators that act
within the 4fN configuration of the lanthanide ion. In addition, the prob-
lem of evaluation of the radial integrals of the second-order contributions
for the complete radial basis sets of one-electron excited states of a given
symmetry is solved within the perturbed function approach. The approach
is illustrated by the results of numerical calculations performed for all the
lanthanide ions.

EFFECTIVE OPERATORS OF SECOND ORDER

The basic formula for the polarizability tensor is very similar to the
Heisenberg–Kramers expression that describes the two photon processes
like electronic Raman scattering or two photon absorption5–9; the only dif-
ference is that the final and the initial states in the matrix elements of a
product are the same. Thus the polarizability tensor is defined by a term of
second-order of time dependent perturbation theory applied for the de-
scription of interactions between the matter and radiation field
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where Xx are various states of intermediate (singly excited) configurations
X of opposite parity to the parity of configuration 4fN. In Eq. (1) the stan-
dard 32 components of polarizability tensor defined in Cartesian coordi-
nates are numbered by the nine pairs of possible combinations of
components ρ1 and ρ2 of tensor operators of electric dipole radiation

D r Ci
i

i iρ ρ ϕ( ) ( ) ( , ) .1 1= ∑ ϑ

It is a common practice to describe the properties of lanthanide doped
materials in the language of the Judd–Ofelt theory of one-photon f ↔ f
electric dipole transitions10,11. This means that the theoretical model is de-
fined within the single configuration approximation and is based on per-
turbation theory. Thus, adopting the assumptions and approximations of
the standard Judd–Ofelt theory, one can express the polarizability tensor in
terms of effective operators that act only within the 4fN configuration. As a
result of the so-called partial closure, the polarizability tensor has the form
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where U(k) is the unit tensor operator with rank k, and A depends on the di-
rections (components) in the following way
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The angular and radial parts of the effective operator that determines the
components of the polarizability tensor have the form
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where the angular part is the standard term of Judd–Ofelt theory, and in
general is defined as follows
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and �k = 1 and �k
∗ = 1 for k even and k odd, respectively, otherwise they both

vanish; ′l describes one-electron states of d- and g-symmetry (the even val-
ues of ′l are required by the selection rules for the non-vanishing reduced
matrix element of the spherical tensor). ξ ′l (ω) is an approximate factor pres-
ent for the asymmetric contributions to the polarizability tensor (for k odd),
and it is defined as follows
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where the energy of the first excited one-electron states of ′l symmetry al-
lowed by the selection rules is used. Due to this approximation of the en-
ergy denominators, it is possible to perform partial closure also for the
terms with k odd, and as a consequence to derive an effective operator form
of the expression.

It is seen from Eq. (3) that due to the condition for the non-vanishing
3j-symbol, k must be even when ρ1 = ρ2 = 0; while in a general case, due to
the triangular conditions of this 3j-symbol, k = 0, 1, 2. Thus, in general, the
polarizability tensor is determined in terms of effective operators by tensor
operators of three possible ranks: 2 (q = –2, –1, 0, 1, 2), 1 (q = –1, 0, 1), and 0
(q = 0) that give the nine required components in a different representa-
tion. It should be mentioned that the expression for the polarizability in
Eq. (1) differs from the basic expression for the scattering amplitude or
two-photon absorption amplitude. Therefore the scalar product of electric
dipole operators in Eq. (1) also gives nonzero contributions. In addition,
there are symmetric terms for k = 2 as well as asymmetric terms for k = 1
(similarily as in the case of electronic Raman scattering).

As mentioned, there is an additional contribution to the polarizability
tensor for k = 0, and it has the simple form
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The radial term in Eq. (4) is defined as a product of two radial integrals
with appropriate energy denominators, namely
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where the original energy denominators from Eq. (1) have been expressed in
the terms of series of (1 ± x)–1 for x = h lω / ε ε( f4 − ′ ′n ), assuming that 0 < x < 1,
and limiting the expansion to the first two terms (for details of this proce-
dure see ref.7). In such a way it is possible to redefine the radial term includ-
ing the troublesome summation over the complete radial basis set of one-
electron states of ′l symmetry within the definition of a new function, the
so-called perturbed function12. As a result, the radial terms of the effective
operator of polarizability tensor have the form

R r1 1 14 4( ) ( )| |′ = 〈 → ′ 〉l lρ f f , (6)

where each perturbed function ρ1(4f → ′l ) contains all the first-order correc-
tions due to the perturbing influence of all singly excited configurations
4fN–1 n′ ′l , for all n′, and it is defined as follows
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In Table I distinct contributions to the polarizability tensor are presented.
In the case of asymmetric components the presence of the energy factor ξ is
denoted to demonstrate that these parts of the polarizability tensor depend
on the energy of the incident beam.

The terms in Table I are numbered by the values of the components of
distinct electric dipole operators present in the original formula. In the case
of effective polarizability, the components are distinguished by the rank of
the unit tensor operator U(k) in Eq. (2), αeff ⇒ = ∑α α δ(ρ + ρ )ρ ρ ρ ρ 2q

k kq q( ) ,
1 2 1 2 1 .

Thus, inspection of Table I leads to the conclusion that α q
( )2 has the follow-

ing components (see the solid lines in Table I)
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In the case of asymmetric terms, for k = 1, due to the asymmetry of the
coefficient A defined by Eq. (3), and because the remaining part of the ef-
fective operator is independent of ρ1 and ρ2, the contributions α ξq

( ) ( )1 0= for
q = ±1, 0 (see the dotted lines in Table I). In order to obtain the tensor in
terms of Cartesian components, the unitary transformation has to be ap-
plied (see Appendix). The vanishing of asymmetric contributions reduces
the expression for the off-diagonal components α x xi j

for i ≠ j, and as ex-
pected from a general consideration rather than from symmetry properties,
this leads to a symmetric matrix of polarization tensor with three out of six
components being different.

The diagonal components, defined by linear combinations of α q
( )2 for q =

±2, 0, are modified by additional contributions that are due to the scalar ef-
fective operator α α0

0
11
002= −

( ) .

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

258 Smentek:

TABLE I
Second-order contributions to the polarizability tensor α ρ ρ1 2
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NUMERICAL ILLUSTRATION

The properties of the electronic structure of lanthanide ions are represented
in the expression for the polarizability tensor by the radial terms. The angu-
lar parts of each effective operator are the same for all ions across the series.
Furthermore, the polarizability in each state is modulated individually by
the values of diagonal matrix elements of unit tensor operators between the
functions describing a particular state. It is obvious then that the accuracy
of the second-order approach depends on the quality of the wavefunctions
applied for the evaluation of these matrix elements (assuming that the
other parts of polarizability tensor, especially the radial integrals, are evalu-
ated exactly).

The radial integrals defined in Eq. (6) contain the perturbed function that
is typical for the standard Judd–Ofelt theory of one-photon f ↔ f transi-
tions. Each of these functions describes the perturbing influence of single
excited configurations in which the 4f electron is promoted to the excited
states of d- or g-symmetry. It should be pointed out, that in Eq. (7) the
summation over n′ covers all one-electron excited states, including the con-
tinuum. Thus, the perturbed functions contain the impact due to all excita-
tions from 4f shell to n′d and n′g, for all n′.

The perturbed functions are the solutions of differential equations that
are very similar to the hydrogen equation. These functions have very
atomic-like features possessing the same number of nodes as the first ex-
cited one-electron state of a given symmetry, and they are localized closer
to the origin than the first excited state (the graphical representation of the
perturbed functions is discussed in ref.13).

The values of the radial integrals discussed here and all the other that are
present in the model of Judd and Ofelt, evaluated for all lanthanide ions,
are reported in ref.14; the values of integrals of the particular case that con-
tribute to the polarizability, R1(d) and R1(g), for all lanthanides, are plotted
in Fig. 1. It is seen from this figure that both curves are very smooth, and
the character of changes with increasing number of 4f electrons is very similar
for both types of excitations. It is seen also that there is no similarity or any
correlation between the values of integrals for complementary systems that
possess the same number of electrons or holes.

In order to present atomic-like properties of perturbed functions, in Fig. 2
the values of R1(g) are compared with those of radial integrals evaluated
with the atomic function of Hartree–Fock model 〈4f|r|4f〉 , as an example.
Obviously the values of both types of integrals are different, the physical
interpretation of functions involved is different (as a matter of fact, the per-
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turbed function as a linear combination of various contributions defined by
Eq. (7) does not have physical interpretation), and still the behavior across
the lanthanide series is so similar that the curves in Fig. 2 are almost the
same, but shifted in relation to each other.

The values of the angular parts that contribute to the components of
polarizability tensor are the same for all lanthanides ions, and their ratio is
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FIG. 2
Comparison of the values of R1(g) (■ ) with the values of 〈4f|r|4f〉 (● ) for the ions across the
lanthanide series
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FIG. 1
Values of radial integrals R1(d) (■ ) and R1(g) (● ) for ions across the lanthanide series
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A A1
2

1
2( ) / ( )d g = 1.8. Since the non-zero part of polarizability tensor is associ-

ated only with the operators of rank 2, in practical calculations only X2
from Eq. (4) has to be included. In this particular case, for k even, X2 is in-
dependent of the energy of the incident beam ω and it has the following
simple form

X2 = –2(1.8η + 1) ,

where η = R1(d)/R1(g), and the value of the ratio of the angular parts is used.
In Fig. 3 the values of η for all lanthanide ions are plotted. It is seen from

this figure that the excitations from the 4f shell to one-electron states of
d-symmetry are relatively more important than those to the g-states. The
value of η decreases with increasing number of 4f electrons from 3.75 for
Ce3+ to 1.79 for Lu3+. It is apparent, however, that the excitations to the
states of g-symmetry are not negligible, and have to be taken into account
in any reliable numerical analysis. Finally, it should be pointed out, that
the conclusions presented here are based on the results of ab initio calcula-
tions, since the radial integrals are evaluated in an exact way.

FINAL REMARKS

It is demonstrated here that it is a rather simple task to evaluate the second-
order contributions to the polarizability tensor when the radial integrals are
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FIG. 3
Values of η = R1(d)/R1(g) for all lanthanide ions
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known. Indeed, for a given lanthanide ion, the polarizability defined in ac-
cordance with Eq. (2) has a simple form
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The scalar part of the polarizability has the form
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where η = R1(d)/R1(g) ≡ 〈ρ1(4f → d)|r1|4f〉/〈ρ1(4f → g)|r1|4f〉 .
The expressions presented above are based on the free ionic system ap-

proximation, and the only impact due to the crystal field sourrounding the
lanthanide ion is introduced through the wave functions ψ used for the
evaluation of the matrix elements of the unit tensor operator. This means
that no direct influence of the crystal field upon the polarizability tensor is
taken into account.

The expressions for the polarizability tensor are based on the single con-
figuration approximation, and it does not contain the impact due to corre-
lation effects. This means that no direct influence of the noncentral part of
Coulomb interaction upon the polarizability tensor is taken into account.

The expressions above do include the impact caused by all singly excited
configurations of the opposite parity to the parity of 4fN configuration, and
they give reliable point for further improvement of the theoretical model of
very subtle properties of materials doped with lanthanides.

In the final conclusions of Kolmakova’s paper2 it is written: “This finding
indicates that a more detailed theoretical approach involving the splitting of ex-
cited configurations by the spin-orbit, crystal field, and electron correlation effects
is needed in general”.

This quotation defines the next steps of research. Due to the sensitivity of
magnetic birefringence to the influence of crystal field14, it is especially im-
portant to improve the model by third-order contributions that represent a
direct perturbing influence of surroundings of the lanthanide ion.

APPENDIX

In order to simplify the numerical calculations for a particular sample for
which the symmetry properties might be used, the Cartesian components
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of the polarizability tensor are presented here in the terms of the contribu-
tions defined in Eq. (2):
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All the contributions are determined by the matrix elements of unit ten-
sor operators U q

( )2 ; only the diagonal terms are modified by α −11
00 that is in-

dependent of an electronic state.
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